Valid HTML 4.01 Transitional

I.
PROMIENIOWANIE CIEPLNE

- lata '90 XIX wieku

WSTĘP

Widmo promieniowania elektromagnetycznego - zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce.

Widmo fal elektromagnetycznych
rys.I.1. Widmo fal elektromagnetycznych. Dla promieniowania widzialnego (światła) długość fali λ mieści się w zakresie od 380 - 780 nm.

E ~ f (są skorelowane liniowo)
Im mniejsza energia tym mniejszy wpływ oddziaływania na komórki żywe. Podczerwień, promieniowanie widzialne i promieniowanie UV są składnikami promieniowania słonecznego.

I.1. PROMIENIOWANIE PODCZERWONE (CIEPLNE)

  • odegrało znaczącą rolę w rozwoju fizyki kwantowej
  • promieniowanie wysyłane przez ciało ogrzane do pewnej temperatury
  • wszystkie ciała, których temperatura jest różna od zera emitują promieniowanie termiczne do otoczenia i absorbują je z niego
  • każde ciało dąży do osiągnięcia równowagi termodynamicznej

Zakres energii E i długości fali λ promieniowania cieplnego.
Zakres energii E i długości fali promieniowania cieplnego

I.2. ZJAWISKO WYTWARZANIA PROMIENIOWANIA - PROCES EMISJI (OPIS KLASYCZNY)

Źródłem promieniowania jest ładunek elektryczny

  1. ładunek stacjonarny (wzor), gdzie a – przyspieszenie, v – prędkość.

    Przypadek statyczny:
    Wokół ładunku q0 wytwarza się pole elektryczne

    wzor
    (I.2.1)   gdzie:
    F - siła elektrostatyczna
    wzor

    Linie pola Linie pola: w każdym miejscu są równoległe do natężenia pola. Kierunek: wyznaczony przez ruch ładunku dodatniego umieszczonego w polu elektrycznym. Natężenia linii pola elektrycznego E jest równe gęstości linii sił.
    rys.I.2. Ruch ładunku dodatniego q1 w polu elektrycznym pochodzącym od dodatniego ładunku punktowego q.

    Dla ładunku punktowego q w odległości r natężenie pola elektrycznego wyraża się wzorem:

    wzor
    (I.2.2)   gdzie:
    wzor - przenikalność elektryczna próżni
    Zależność natężenia pola E od odległości r dla ładunku punktowego
    wzor
    (I.2.2a)
    rys.I.3. Zależność natężenia pola E od odległości r dla ładunku punktowego.
    ρE - gęstość energii pola elektrycznego E
    wzor

    Z przestrzeni wokół ładunku stacjonarnego nie jest emitowana fala elektromagnetyczna, z czego wynika, że energia jest stacjonarna.

  2. ładunek poruszający się ze stałą prędkością v.

    W tym przypadku energia również jest stacjonarna, porusza się wraz z ładunkiem. Dodatkowo wytwarza się pole magnetyczne o indukcji B:

    wzor
    wzor
    wzor
    (I.2.3)

    Pomimo pojawienia się pola elektromagnetycznego, nie ma emisji promieniowania (stacjonarne pole elektromagnetyczne).

  3. ładunek doznaje przyspieszenia wzor

    Każdy ładunek doznający przyspieszenia emituje promieniowanie.

    r >> 1
    E, B(wzor)
    wzorwzor

    E = E0sin(2πft)
    B = B0sin(2πft)
    Fala elektromagnetyczna
    Rys.I.4. Fala elektromagnetyczna jest falą poprzeczną, to znaczy wektory E i B są wzajemnie prostopadłe. Fala ta rozchodzi się w płaszczyźnie XY.
    wzor
    wzorwzor
Polaryzacja – uporządkowanie drgańwzor
a)Częściowa polaryzacja b)Światło niespolaryzowane c)Polaryzacja kołowa rys.I.5. a) Częściowa polaryzacja, b) Światło niespolaryzowane – w sposób chaotyczny zmienia się kierunek drgań (0%PL), c) Polaryzacja kołowa

I.3. NATĘŻENIE EMITOWANEGO PROMIENIOWANIA

Jest to energia jaka przechodzi przez jednostkową powierzchnię w czasie 1s.
rysunek
Rys.I.6. Wiązka promieniowania padająca na jednostkową powierzchnię.
wzor
(I.3.1)  
Relacja między wektorami wzor wzor
rys.I.7. Relacja pomiędzy wektorami r i a.

Natężenie całkowitego promieniowania.

wzor
(I.3.2)   Ze wzrostem temperatury wzrasta częstość drgań, co z kolei generuje wzrost przyspieszenia, a co za tym idzie – większe promieniowanie.

I.4. WPŁYW TEMPERATURY T

Znaleziony eksperymentalnie wpływ temperatury na natężenie promieniowania opisuje prawo Stefana:
wzor
(I.4.1)   e – zdolność emisyjna (jest tym lepsza, im e bliższe 1)
wzor
wzor – Stała Stefana

Ciało emituje promieniowanie w każdej temperaturze (tzn. gdy T > 0 K). Widmo promieniowania jest ciągłe.
Zjawisko absorpcji – proces odwrotny do emisji.

wzor – Zdolność absorpcyjna

Powierzchnie gładkie odbijają energię lepiej od matowych.
Prawo Kirchhoffa

wzor
(I.4.2)  

– Zdolność emisyjna jest równa zdolności absorpcyjnej promieniowania.
Barwa (kolor) zmienia się od czerwonej do niebieskiej wraz ze wzrostem temperatury.

I.5. CIAŁO DOSKONALE CZARNE (CDC) – POJĘCIE MODELOWE

Ciała, dla których zdolność absorpcyjna jest równa 1 nazywamy ciałami doskonale czarnymi.
wzor
(I.5.1)  

A zatem całkowicie absorbuje energię.
Ze wzorów (4.2) oraz (5.1) wynika, że

e = 1

Podstawiając tą wartość do wzoru (4.1) otrzymujemy, że

wzor
(I.5.2)  

Zdolność emisyjna CDC jest uniwersalna.
Modele CDC

  1. czarna matowa powierzchnia (sadza)
  2. wnęka z małym otworem
Model CDC
Rys.I.8. Wnęka z małym otworem. Promieniowanie wpadające przez otwór po wielokrotnych odbiciach jest pochłaniane przez wnękę.

Widmo promieniowania CDC – krzywa widmowa

Krzywa widmowa CDC
Rys.I.9. Krzywa widmowa ciała doskonale czarnego dla różnych temperatur w funkcji długości fali promieniowania

Z prawa Stefana wynika, że stosunek natężeń w poszczególnych temperaturach opisuje relacja:

wzor
  Jeżeli wzor to wzor

Ze wzrostem temperatury T wzor maleje, lecz zachowana jest relacja znana jako prawo przesunięć Wiena (10):

wzor
 
wzor
(I.5.3)  

I.6. KLASYCZNE TEORIE PROMIENIOWANIA

a) teoria Wiena (1893)

wzor
(I.6.1)  

Przybliżenie opisane wzorem (6.1) jest słuszne, gdy duża energia (małe l) . Jest to przybliżenie wysokotemperaturowe.

b) teoria Rayleigha – Jeansa (RJ)

wzor
(I.6.2)   wzorKatastrofa w nadfiolecie

Teoria Wiena opisuje "lewe zbocze" wykresu z rys.10, natomiast Teoria Rayleigha – Jeansa opisuje poprawnie "prawe zbocze" tego wykresu.

Krzywe widmowe
Rys.I.10. Porównanie krzywej widmowej na podstawie teorii Wiena (niebieska linia), teorii Rayleigha-Jeansa (różowa linia) z krzywą otrzymaną doświadczalnie dla CDC.

Wniosek:
Teoria klasycznie nie potrafiła wyjaśnić w sposób spójny całego widma promieniowania, a w szczególności jego maksimum.

I.7. TEORIA PLANCKA (KWANTOWA) (1900)

Założenie:
Jeżeli któraś z wielkości opisujących układ zmienia się w sposób harmoniczny, to energia przyjmuje wartości dyskretne.

wzor
 
wzor
(I.7.1)  
n = 1, 2, 3, ...
wzor– kwant działania (stała Plancka)

Ze wzoru (7.1) wynika, że widmo energetyczne oscylatora kwantowego jest dyskretne.

Schematyczna ilustracja wzoru Plancka
Rys.I.11. Schematyczna ilustracja wzoru (13).

Planck traktując atomy emitujące promieniowanie jak zbiór oscylatorów harmonicznych kwantowych, wyprowadził następujący wzór na gęstość promieniowania:

wzor
(I.7.2) 

Wzór (7.2) poprawnie opisuje widmo promieniowania, a w ekstremalnych warunkach przechodzi we wzór RJ (gdy wzor ), oraz we wzór Wiena (wzor).

Krzywa Plancka
Rys.I.12. Krzywa Plancka przedstawiająca rozkład widmowy promieniowania.